ELSEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Nakijiquinones E and F, new dimeric sesquiterpenoid quinones from marine sponge

Yohei Takahashi, Takaaki Kubota, Jun'ichi Kobayashi *

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan

ARTICLE INFO

Article history: Received 2 April 2008 Revised 13 June 2008 Accepted 31 October 2008 Available online 5 November 2008

Keywords: Marine sponge Dimeric sesquiterpenoid quinones Nakijiquinones E and F

ABSTRACT

Two new dimeric sesquiterpenoid quinones, nakijiquinones E(1) and F(2), have been isolated from an Okinawan marine sponge, and the structures and relative stereochemistry of $\mathbf{1}$ and $\mathbf{2}$ were elucidated on the basis of the spectral data. Nakijiquinones E(1) and F(2) were the first dimeric sesquiterpenoid quinones possessing a 3-aminobenzoate moiety.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Marine sponges contain a number of unique secondary metabolites with a diversity of biological activities. During our search for bioactive metabolites from marine organisms, we recently isolated new sesquiterpenoid quinones, metachromins L–T, from an Okinawan sponge *Spongia* sp. (SS-1037). Further investigation of extracts of another lot of the sponge resulted in the isolation of two new dimeric sesquiterpenoid quinones, nakijiquinones E (1) and F (2). Here, we describe the isolation and structure elucidation of 1 and 2.

2. Results and discussion

The sponge collected off Unten Port, Okinawa, was extracted with MeOH. The extracts were partitioned between EtOAc and water. EtOAc-soluble materials were purified by silica gel C_{18} column chromatographies followed by C_{18} HPLC (Wakosil-II 5C18 AR, CH₃CN/H₂O/TFA) to afford nakijiquinones E (**1**, 0.0025%, wet weight) and F (**2**, 0.0009%) together with known related sesquiterpenoids, dictyoceratins A-C,^{5,6} isospongiaquinone,⁷ 6'-hydroxy-4'-methoxyavarone,⁸ neoavarol,⁹ nakijiquinones A-D,^{10,11} and *endo*-olefin isomer at C-3 of smenospongine.¹²

O CO₂Me
HO 18 HO 18' 15'
15 16 20 N 18' 16' 15'
H HO 14' H 10' 15'
11' 10' 5'
12' 11'

Nakijiquinone E (1) was obtained as a red amorphous solid and the molecular formula was established to be $C_{44}H_{59}NO_7$ by HRESIMS data [m/z 736.42002 (M+Na)⁺, \varDelta +1.1 mmu]. IR absorptions implied the presence of OH and/or NH (3280 cm⁻¹), carboxy (1670 cm⁻¹), and conjugated carbonyl (1640 and 1590 cm⁻¹) functionalities. UV

2

^{*} Corresponding author. Tel.: +81 11 706 3239; fax: +81 11 706 4989. E-mail address: jkobay@pharm.hokudai.ac.jp (J. Kobayashi).

absorptions (313 and 494 nm) suggested the presence of quinone chromophore. The HRESIMS data and the $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra suggested that 1 was a dimeric sesquiterpenoid quinone.

The ^1H NMR spectrum of $\mathbf{1}$ in CDCl $_3$ showed signals due to a secondary methyl (δ_{H} 0.99), three tertiary methyls (δ_{H} 1.55, 1.02, and 0.85), and a singlet olefinic proton (δ_{H} 5.15). These data suggested the presence of a tetramethyl decaline moiety with an endo olefin (C-1–C-14) in $\mathbf{1}$, while signals due to a secondary methyl (δ_{H} 0.99), an exomethylene (δ_{H} 4.46 and 4.41), and two tertiary methyls (δ_{H} 1.07 and 0.85) implied the presence of a trimethyl decaline moiety with an exomethylene (C-1′–C-14′) in $\mathbf{1}$. Inspection of the ^1H - ^1H COSY and HMBC spectra of $\mathbf{1}$ revealed the presence of these two decaline moieties (C-1–C-14 and C-1′–C-14′) as shown in Figure 1.

The presence of a 2-amino-5-hydroxy-benzoquinone moiety was deduced from the chemical shifts¹⁰ of C-16–C-21 (δ_C 183.0, 180.0. 156.0. 148.9. 115.1. and 97.0) in 1. This was confirmed by HMBC correlations of H-19 to C-17 and C-21, H₂-15 to C-16, C-17 and C-21, and 20-NH to C-19 and C-21. The 2-amino-5-hydroxybenzoquinone moiety (C-16-C-23) and a decaline (C-l-C-14) were suggested to be connected between C-9 and C-16 through C-15 on the basis of HMBC correlations of H₂-15 to C-9 and C-10, while the chemical shifts of C-16'-C-23' ($\delta_{\rm C}$ 170.1, 156.6, 156.1, 133.2, 117.5, 110.6, 105.3, and 52.3) and HMBC correlations for H_2 -15' to C-16', C-17', and C-21', H-21' to C-17', C-19', C-21', and C-22', 17'-OH to C-17', 20-NH to C-18', 20-NH to C-18', and H₃-23' to C-22' revealed the presence of methyl 3-amino-2,4-dihydroxybenzoate moiety (C-16'-C-22' and C-23') in **1** as shown in Figure 1. The connection between C-9' and C-16' through C-15' was implied by HMBC crosspeaks for H₂-15 to C-9' and C-10'. Thus, the gross structure of nakiiiquinone E was elucidated to be 1.

The relative stereochemistry of the two decaline moieties in nakijiquinone E (1) were elucidated on the basis of NOESY correlations as shown in Figures 2 and 3. The a-configuration of H-10 and β -configurations of C-12, C-13, and C-14 were deduced from NOESY correlations of H-8/H-10, H-10/H₂-15, and H₃-12/H₃-14, while NOESY correlations of H-8'/H-10', H-10'/H₂-15', and H₃-12'/H₃-14' revealed that three methyl groups (Me-12', Me-13', and Me-14') were all β -oriented and H-10 was α -oriented.

Nakijiquinone F (2) was obtained as a red amorphous solid and the molecular formula was established to be $C_{44}H_{59}NO_7$ by HRE-SIMS data [m/z 736.41828 (M+Na)⁺, Δ –0.6 mmu]. IR and UV spectra of 2 were almost the same as those of 1, suggesting that nakijiquinone F (2) was an analog of 1. ^{1}H and ^{13}C NMR spectra of 2 differed from those of 1 in lacking of signals for an exomethylene present in 1. The ^{1}H NMR spectrum of 2 showed signals for olefinic protons (δ_H 5.15, 2H) and olefinic methyls (δ_H 1.55, and 1.53, 3H each). These data suggested that nakijiquinone F (2) possessed two tetramethyl decaline rings with an endo olefin. Analysis

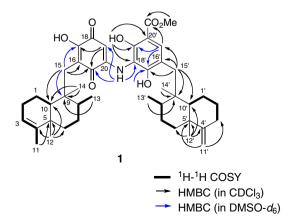
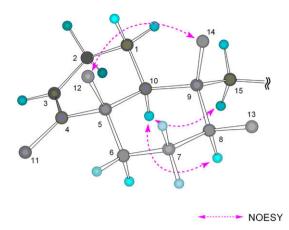
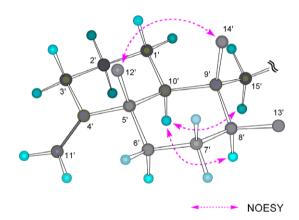




Figure 1. Selected 2D NMR correlations for nakijiquinone E (1).

Figure 2. Selected NOESY correlations and relative stereochemistry for C-1–C-15 moiety of nakijiquinone E (1) (hydrogen atoms of methyl groups were omitted).

Figure 3. Selected NOESY correlations and relative stereochemistry for C-1′–C-15′ moiety of nakijiquinone E (1) (hydrogen atoms of methyl groups were omitted).

of ${}^{1}\text{H} - {}^{1}\text{H}$ COSY and HMBC spectra of nakijiquinone F indicated the gross structure to be **2** (Fig. 4). The relative stereochemistries of the two decaline rings in **2** were elucidated to be the same as those of C-1–C-15 moiety of **1** on the basis of the NOESY data (Fig. 5).

Nakijiquinones E (1) and F (2) were the first dimeric sesquiterpenoid quinones possessing a 3-aminobenzoate moiety, though some dimeric sesquiterpenoid quinones from the sponges *Dysidea* sp. $^{13-15}$ have been reported so far. Nakijiquinones E (1) and F (2) did not show cytotoxicity against murine leukemia P388 and L1210, and KB human epidermoid carcinoma cells ($IC_{50} > 10 \mu g/mL$).

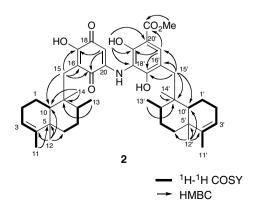
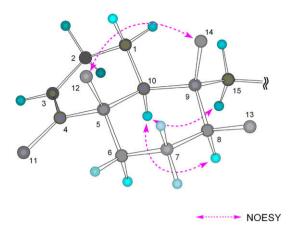



Figure 4. Selected 2D NMR correlations for nakijiquinone F (2).

Figure 5. Selected NOESY correlations and relative stereochemistry for C-1–C-15 moiety of nakijiquinone F (2) (hydrogen atoms of methyl groups were omitted).

3. Experimental

3.1. General

Optical rotation was recorded on a JASCO P-1030 polarimeter. IR and UV spectra were recorded on JASCO FT/IR-230 and Shimadzu UV-1600PC spectrophotometer, respectively. $^1\mathrm{H}$ and $^{13}\mathrm{C}$

NMR spectra were recorded on a Bruker AMX-600 spectrometers using 2.5 mm micro cells (Shigemi Co., Ltd) for CDCl₃ and DMSO- d_6 , respectively. The 7.26 and 77.0 ppm resonances of residual CHCl₃ and the 2.49 and 49.8 ppm resonances of residual DMSO were used as internal references for 1 H and 13 C NMR spectra, respectively. ESI mass spectra were obtained on a JEOL JMS-700TZ spectrometer. Molecular mechanics calculations were performed by using CS Chem 3D Ultra ver. 7.0 (MM2 force field). 16

3.2. Extraction and isolation

The sponge (0.6 kg, wet weight) was extracted with MeOH, and the extract (20.2 g) was partitioned between EtOAc and H₂O. EtOAc-soluble materials (2.2 g) was purified by a silica gel column (hexane/acetone), a C₁₈ column (MeOH/H₂O) and silicagel columns (hexane/CHCl₃, and then hexane/EtOAc) followed by C₁₈ HPLC (Wakosil-II 5C18 AR, Wako Pure Chemical Ind., Ltd, 10×250 mm; eluent CH₃CN/H₂O/TFA, 95:5:0.05; flow rate, 2.0 mL/min; UV detection at 300 nm) to afford nakijiquinones E (1) (1, 2.0 mg, t_R 36 min) and F (2, 0.7 mg, t_R 38 min).

3.3. Nakijiquinone E (1)

Red amorphous solid; $[\alpha]_{\rm D}^{23}$ +54 (c 0.25, CHCl₃); IR (film) $v_{\rm max}$ 3280, 1670, 1640, 1590, 1510, 1440, 1380, 1340, and 1210 cm⁻¹;

Table 1¹H and ¹³C NMR Data of Nakijiquinone E (1) in CDCl₃

Position	δ_{c}	$\delta_{\rm H}$ (m, J in Hz)	HMBC	Position	δ_{c}	$\delta_{ ext{H (m, J in Hz)}}$	HMBC
1	20.0 CH ₂	2.06 (m) 1.49 (m)		1′	23.1 CH ₂	2.01 (m) 1.59 (m)	
2	27.1 CH ₂	2.04 (m) 1.95 (m)		2′	27.9° CH ₂	1.90 (m) 1.2–1.3 (m)	
3	120.9 CH	5.15 (br s)	2, ^h 5, ^h 11 ^h	3′	33.0 CH ₂	2.35 (ddd, 13.5, 13.5, 4.8)	
4	144.2 C					2.11 (m)	
5	38.5 C			4′	159.7 C		
6	35.9 CH ₂	1.64 (m) 1.11 (m)		5′ 6′	40.2 C 36.5 ^f CH ₂	1.50 (m)	
7	28.0 CH ₂	1.38 (m) 1.34 (m)		7′	27.6 CH ₂	1.21 (m) 1.42 ^a (m)	
8	37.9 CH	1.32 (m)		8′	36.5 ^f CH	1.25 (m)	
9	42.8 C			9′	41.9 C		
10	47.7 CH	1.11 (d, 12.0)		10′	48.1 CH	0.91 (d, 11.8)	
11	18.2 CH₃	1.55 ^b (br s)	3, 4, 5	11'	103.1 CH ₂	4.46 (s)	3', 5'
12	20.2 CH ₃	1.02 ^b (s)	4, 5, 6, 10			4.41 (s)	
13	17.5 ^d CH ₃	0.99 ^b (d, 6.3)	7, 8, 9	12′	20.5 CH ₃	1.07 ^b (s)	4', 5', 6', 10'
14	17.3 ^e CH₃	0.85 ^b (s)	8, 9, 10, 15	13′	17.7 ^d CH₃	0.99 ^b (d, 6.3)	7', 8', 9'
15	32.6 CH ₂	2.61 (d, 13.9) 2.47 (d, 13.9)	8, ^h 9, ^h 10, 16, 17, ^h 21 8, ^h 9, ^h 10, 16, 17, ^h 21	14′ 15′	17.4 ^e CH₃ 36.6 ^f CH₂	0.85 ^b (s) 2.59 ^a (br s)	8', 9', 10', 15' 8', ^h 9', 10', 14', 16', 17', 21'
16	115.1 C			16′	117.5 C		
17	156.0 C			17′	156.6 C		
18	180.0 C			18′	110.6 ^g C		
19	97.0 CH	5.21 (s)	17, 21	19′	156.1 C		
20	148.9 C			20′	105.3 ^g C		
21	183.0 C			21′	133.2 CH	7.54 (s)	15′, 17′, h 19′, 22′
20-NH		5.8–6.4 (br s)	19, ^h 21, ^h 18 ^{,h}	22′ 23′ 17′-OH 19′-OH	170.1 C 52.3 CH ₃	3.91 ^b (s) 8.45 11.06 (s)	22' 16' ^h 18', 19', 20'

^a 2H.

^b 3Н.

 $^{^{}c-g}$ Interchangeable.

h In DMSO-d₆.

Table 2 1 H and 13 C NMR Data of Nakijiquinone F (**2**) in CDCl₃

Position	δ_{C}	$\delta_{\rm H}$ (m, J in Hz)	НМВС	Position	δ_{C}	$\delta_{\rm H}$ (m, J in Hz)	НМВС
1	20.0° CH ₂	2.08 (m) 1.49 (m)		1′	19.7 CH ₂	1.99 (m) 1.64 (m)	
2	27.1 CH ₂	2.04 (m) 1.92 (m)		2′ 3′	26.0 CH ₂ 120.4 CH	2.11 ^a (m) 5.15 (br s)	
3	120.9 CH	5.15 (br s)		4′	144.4 C		
4	144.2 C			5′	38.3 C		
5	38.5 C			6′	35.9 ^d CH ₂	1.60 (m)	
6	35.9 ^d CH ₂	1.65 (m) 1.11 (m)		7′	27.7 CH ₂	0.94 (m) 1.37 ^a (m)	
7	28.0 CH ₂	1.37 ^a (m)		8′	36.2 CH	1.22 (m)	
8	37.9 CH	1.32 (m)		9′	41.5 C		
9	42.8 C			10′	45.6 CH	1.17 (d, 11.8)	
10	47.7 CH	1.11 (d, 11.6)		11′	18.1 CH₃	1.53 ^b (s)	3', 4', 5'
11	18.2 CH₃	1.55 ^b (br s)	3, 4, 5	12′	20.0 ^c CH₃	1.03 ^{b,g} (s)	4', 5', 6', 10'
12	20.2 CH ₃	1.02 ^{b,g} (s)	4, 5, 6, 10	13′	17.6e CH ₃	1.00 ^b (d, 6.3)	7', 8', 9'
13	17.7e CH₃	1.00 ^b (d, 5.7)	7, 8, 9	14′	17.3 ^f CH₃	0.86 ^b (s)	8', 9', 10', 15'
14	17.5 ^f CH₃	0.86 ^b (s)	8, 9, 10, 15	15′	36.7 CH ₂	2.70 (d, 14.5)	9', 10', 16', 17', 21'
15	32.6 CH ₂	2.62 (d, 13.7) 2.49 (d, 13.7)	8, 9, 10, 16, 17, 21 9, 10, 16, 17, 21	16′	115.1 C	2.61 (d, 14.5)	8', 9'
16	115.1 C	(, , , , ,	, , , , ,	17′	156.6 C		
17	155.9 C			18′	105.4 C		
18	180.0 C			19′	156.2 C		
19	97.1 CH	5.24 (s)	17, 21	20′	105.4 C		
20	148.9 C			21′	133.4 CH	7.60 (s)	15', 17', 19', 22'
21	183.0 C			22′	170.2 C		
20-NH		5.88 (br)		23′ 19′-OH	52.2 CH₃	3.92 ^b (s) 11.07 (s)	22' 18', 19', 20'

а 2H.

UV (MeOH) $\lambda_{\rm max}$ 265 (ε 14,300, sh), 313 (17,500), and 494 nm (1700); 1 H and 13 C NMR data see Table 1; ESIMS m/z 736 (M+Na) $^{+}$ and 1449.8 (2M+Na) $^{+}$; HRESIMS m/z 736.42002 [(M+Na) $^{+}$, calcd for C₄₄H₅₉NO₇Na, 736.41892, error +1.49 ppm].

3.4. Nakijiquinone F (2)

Red amorphous solid; $[\alpha]_D^{25}$ +44 (c 0.2, CHCl3); IR (film) $v_{\rm max}$ 3270, 1670, 1640, 1590, 1500, 1440, 1380, 1340, and 1210 cm⁻¹; UV (MeOH) $\lambda_{\rm max}$ 265 (ϵ 17,300, sh), 313 (21,500), and 490 nm (2200); 1 H and 13 C NMR data see Table 2; ESIMS (positive) m/z 714 (M+H) $^+$ and 736 (M+Na) $^+$; HRESIMS m/z 736.41828 [(M+Na) $^+$, calcd for $C_{44}H_{59}NO_7$, 736.41892, error -0.87 ppm].

Acknowledgments

We thank Ms. S. Oka, Center for Instrumental Analysis, Hokkaido University, for measurements of ESIMS. This work was partly supported by a grant from the Uehara Memorial Foundation and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References and notes

- Blunt, J. W.; Copp, B. R.; Hu, W.-P.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2008, 25, 35.
- Nishi, T.; Kubota, T.; Fromont, J.; Sasaki, T.; Kobayashi, J. Tetrahedron 2008, 64, 3127.
- 3. Takahashi, Y.; Kubota, T.; Fromont, J.; Kobayashi, J. *Tetrahedron* **2007**, 63, 8770.
- Takahashi, Y.; Yamada, M.; Kubota, T.; Fromont, J.; Kobayashi, J. Chem. Pharm. Bull. 2007, 55, 1731.
- 5. Nakamura, H.; Deng, S.; Kobayashi, J.; Ohizumi, Y.; Hirata, Y. *Tetrahedron* **1986**, 42, 4197.
- Kushlan, D. M.; Faulkner, D. J.; Parkanyi, L.; Clardy, J. Tetrahedron 1989, 45, 3307.
- Kazlauskas, R.; Murphy, P. T.; Warren, R. G.; Wells, R. J.; Blount, J. F. Aust. J. Chem. 1978, 31, 2685.
- 8. Loya, S.; Hizi, A. FEBS Lett. 1990, 269, 131-134.
- 9. Iguchi, K.; Sahashi, A.; Kohno, J.; Yamada, Y. Chem. Pharm. Bull. 1990, 38, 1121.
- Shigemori, H.; Madono, T.; Sasaki, T.; Mikami, Y.; Kobayashi, J. *Tetrahedron* 1994, 50, 8347.
- 11. Kobayashi, J.; Madono, T.; Shigemori, H. Tetrahedron 1995, 51, 10867.
- Utkina, N.; Denisenko, V. A.; Scholokova, O. V.; Makarchenko, A. E. J. Nat. Prod. 2003, 66, 1263–1265.
- Rodriguez, A. D.; Yoshida, W. Y.; Scheuer, P. J. *Tetrahedron* **1990**, *46*, 8025.
- Alvi, K. A.; Diaz, M. C.; Crews, P.; Slate, D. L.; Lee, R. H.; Moretti, R. J. Org. Chem. 1992, 57, 6604.
- 15. Carney, J. R.; Scheuer, J. *Tetrahedron Lett.* **1993**, 23, 3727.
- 16. Allinger, N. L. J. Am. Chem. Soc. 1977, 99, 8127.

^ь 3Н.

c-g Interchangeable.